# Mathematics 222B Lecture 12 Notes 

Daniel Raban

February 24, 2022

## 1 Overview of Schauder Theory

### 1.1 Main theorems of Schauder theory

Schauder theory can be summarized as "Hölder-based elliptic regularity theory." Here are some of the main theorems.

Theorem 1.1 (Shauder, interior regularity, divergence form). Let $U$ be an open subset of $\mathbb{R}^{d}$, and suppose that $P u=f$, where $P u=-\partial_{j}\left(a^{j, k} \partial_{k} u\right), a \succ \lambda I$, and $a \in C^{k-1, \alpha}(\bar{U})$, Assume that $u \in C^{k, \alpha}(\bar{U})$ (with $k \geq 1$ and $0<\alpha<1$ ) and $f \in C^{k-2, \alpha}(\bar{U})$ (if $k=1$, we assume that $f=f^{0}+\sum_{j=1}^{d} \partial_{j} f^{j}$ with $f^{0}, f^{j} \in C^{0, \alpha}(\bar{U})$ ). Then for all $V \subseteq \subseteq U$, there exists a constant $C=C_{V}$ such that

$$
\|u\|_{C^{k, \alpha}(V)} \leq C\left(\|u\|_{C^{0}(U)}+\|f\|_{C^{k-2, \alpha}(U)}\right) .
$$

(If $k=1$, we define $\|f\|_{C^{-1, \alpha}}:=\left\|f^{0}\right\|_{C^{0, \alpha}}+\sum_{j=1}^{d}\left\|f^{j}\right\|_{C^{0, \alpha}}$.)
Remark 1.1. We omit the $b^{j}+\partial_{j} u+c u$ parts because they can be easily added, and they are generally dealt with on a case-by-case basis to determine what regularity you need for $b$ and $c$.

Theorem 1.2 (Schauder, interior regularity, non-divergence form). Let $U$ be an open subset of $\mathbb{R}^{d}$, and suppose that $Q u=f$, where $Q u=-a^{j, k} \partial_{j} \partial_{k} u, a \succ \lambda I$, and $a \in C^{k-2, \alpha}(\bar{U})$, Assume that $u \in C^{k, \alpha}(\bar{U})$ (with $k \geq 2$ and $0<\alpha<1$ ) and $f \in C^{k-2, \alpha}(\bar{U})$. Then for all $V \subseteq \subseteq U$, there exists a constant $C=C_{V}$ such that

$$
\|u\|_{C^{k, \alpha}(V)} \leq C\left(\|u\|_{C^{0}(U)}+\|f\|_{C^{k-2, \alpha}(U)}\right) .
$$

Definition 1.1. We say that $U$ has $C^{k, \alpha}$ boundary if for all $x \in \partial U$, there exists an $r>0$ such that (after possibly rearranging the axes)

$$
U \cap B_{r}(x)=\left\{y \in B_{r}(x): y^{n}>\gamma\left(y^{1}, \ldots, y^{d-1}\right) \gamma \in C^{k, \alpha}\right\} .
$$

Theorem 1.3 (Schauder, boundary regularity, divergence form). Assume the same hypotheses in the interior divergence form theorem, and assume that $\partial U$ is $C^{k, \alpha}$ and $U$ is bounded. Take $P u=f$ with the boundary condition $\left.u\right|_{\partial U}=0$. Then there exists a constant $C$ such that

$$
\|u\|_{C^{k, \alpha}(U)} \leq C\left(\|u\|_{C^{0}(U)}+\|f\|_{C^{k-2, \alpha}(U)}\right)
$$

Theorem 1.4 (Schauder, boundary regularity, non-divergence form). Assume the same hypotheses in the interior non-divergence form theorem, and assume that $\partial U$ is $C^{k, \alpha}$ and $U$ is bounded. Take $Q u=f$ with the boundary condition $\left.u\right|_{\partial U}=0$. Then there exists a constant $C$ such that

$$
\|u\|_{C^{k, \alpha}(U)} \leq C\left(\|u\|_{C^{0}(U)}+\|f\|_{C^{k-2, \alpha}(U)}\right) .
$$

### 1.2 Overall strategies of the proofs

Here are strategies to prove these theorems.
Interior:

1. Prove the result in the constant coefficient case ( $a^{j, k}$ constant).
2. Prove the general case using the constant coefficient case by the method of freezing the coefficients: Elliptic regularity is local, so we can split the space into small balls and prove the statement on each ball. The regularity of $a^{j, k}$ allows us to approximate the general problem by constant coefficient problems.

Boundary:
0 . Locally straighten the boundary to reduce to the case of half balls.
$1+2$. Use the same method as for interior regularity. Step 0 makes the relevant constant coefficient problems be the half-space case.

We will provide two proofs for the constant coefficient case:
A. Littlewood-Paley theory proof
B. Compactness + contradiction proof.

### 1.3 Littlewood-Paley proof of Schauder estimates

Theorem 1.5 (Constant coefficient Schauder estimate). Let $P u=-\partial_{j}\left(a_{0}^{j, k} \partial_{k} u\right)=-a_{0}^{j, k} \partial_{j} \partial_{k} u$, where $a_{0}^{j, k}$ is constant on $\mathbb{R}^{d}$, and $a_{0} \succ \lambda I$. Assume that $\left|a_{0}^{j, k}\right| \leq \Lambda$, where $\Lambda \geq \lambda>0$. For $u \in C_{c}^{k, \alpha}\left(\mathbb{R}^{d}\right)$ and $f \in C^{k-2, \alpha}\left(\mathbb{R}^{d}\right)$ such that $P u=f$,

$$
\|u\|_{C^{k, \alpha}\left(\mathbb{R}^{d}\right)} \leq C\|f\|_{C^{k-2, \alpha}\left(\mathbb{R}^{d}\right)} .
$$

Let us emphasize that we assume that $u$ has compact support. We will focus on the case $k=2$.

Definition 1.2. Define

$$
\begin{gathered}
\chi_{\leq 0}(\xi)= \begin{cases}1 & |\xi| \leq 1 \\
0 & |\xi|>1 \\
\geq 0 & \forall \xi,\end{cases} \\
\chi_{\leq k}(\xi)=\chi_{\leq 0}\left(\xi / 2^{k}\right), \\
\left.\chi_{k}(\xi)=\chi_{\leq k+1}(\xi)-\chi_{\leq k}(\xi) \quad \text { (so supp } \chi_{k} \subseteq\left\{\xi: 2^{k} \leq|\xi| \leq 2^{k+2}\right\}\right) .
\end{gathered}
$$

The Littlewood-Paley projections are

$$
P_{k} v=\mathcal{F}^{-1}\left(\chi_{k}(\xi) \widehat{v}\right), \quad P_{\leq k}=\mathcal{F}^{-1}\left(\chi_{\leq k}(\xi) \widehat{v}\right)
$$



Observe that for all $v \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$,

$$
v=P_{\leq k_{0}} v+\sum_{k>k_{0}} P_{k} v .
$$

If $v$ satisfies certain regularirt conditions in the same norm, $P_{\leq k_{0}} v \rightarrow 0$ as $k_{0} \rightarrow-\infty$. Note that $|\xi| \simeq 2^{k}$ on supp $\chi_{k}$.

Lemma 1.1 (Littlewood-Paley characterization of $C^{0, \alpha}\left(\mathbb{R}^{d}\right)$ ). Let $v \in C^{0, \alpha}\left(\mathbb{R}^{d}\right)$. Then

$$
[v]_{C^{0, \alpha}}=\sup _{\substack{x, y \\ x \neq y}} \frac{|v(x)-v(y)|}{|x-y|^{\alpha}} \simeq \sup _{k \in \mathbb{Z}} 2^{k \alpha}\left\|P_{k} v\right\|_{L^{\infty}}
$$

Here is the proof of this lemma:
Proof. ( $\gtrsim$ ): Both seminorms are invariant to scaling, so it suffices to consider $k=0$. So we just have to show that

$$
\left|P_{0} v\right| \lesssim[v]_{C^{0, \alpha}} .
$$

Since $\int \stackrel{\vee}{\chi}_{0}(y) d y=0$ iff $\chi_{0}(0)=0$,

$$
P_{0} v=\int \stackrel{\vee}{\chi}_{0}(x-y) v(y) d y=\int \stackrel{\vee}{\chi_{0}}(x-y)(v(y)-v(x)) d y
$$

$$
\leq \underbrace{\int \stackrel{\vee}{\chi}_{0}(x-y)|x-y|^{\alpha} d y[v]_{C^{0, \alpha}} .}_{\text {fixed } \mathcal{S}\left(\mathbb{R}^{d}\right) \text { function }}
$$

( $\lesssim$ ): Whenever we work with Littlewood-Paley theory, we should think about what scale we are working on. Let $L=|x-y|$, and choose $k_{0}$ so that $L^{-1} \simeq 2^{k_{0}}$. Decompose

$$
v(x)-v(y)=P_{\leq k_{0}} v(k)-P_{\leq k_{0}} v(y)+\sum_{k>k_{0}} P_{k} v(x)-P_{k} v(y)
$$

We can bound the latter two terms as

$$
\begin{aligned}
\left\|\sum_{k \geq k_{0}} P_{\leq k_{0}} v\right\|_{L^{\infty}} & \leq \sum_{k<k_{0}}\left\|P_{k} v\right\|_{L^{\infty}} \\
& \leq \sum_{k \geq k_{0}} 2^{-k \alpha}[v]_{C^{0, \alpha}} \\
& \simeq L^{\alpha}[v]_{C^{0, \alpha}}
\end{aligned}
$$

We can bound the first terms using the fundamental theorem of calculus:

$$
\begin{aligned}
\left|P_{\leq k_{0}} v(x)-P_{\leq k_{0}} v(y)\right| & \leq \mid \nabla P_{\leq k_{0}} v \|_{L^{\infty}} L \\
& \leq \sum_{k \leq k_{0}}\left\|\nabla P_{k} v\right\|_{L^{\infty}} L \\
& \lesssim L \sum_{k \leq k_{0}} 2^{k} 2^{-k \alpha}[v]_{w t C^{0, \alpha}} \\
& \simeq L L^{-(1-\alpha)}[v]_{\widetilde{C}^{0, \alpha}} .
\end{aligned}
$$

Now we can prove the theorem.
Proof. We have $P\left(P_{k} u\right)-P_{k} f$, so

$$
a^{j, \ell} \xi_{j} \xi_{\ell} \widehat{P_{k} u}=\widehat{P_{k} f} .
$$

Since $\lambda|\xi|^{2} \leq a_{0}^{j, \ell} \xi_{j} \xi_{k}$,

$$
\widehat{P_{k} u}=\frac{2^{2 k}}{a^{j,} \xi_{j} \xi_{\ell}} \widehat{P_{k} f} \widetilde{\chi}_{k} \frac{1}{2^{2 k}}=\frac{1}{2^{2 k}} \underbrace{\frac{2^{2 k}}{a^{j, \ell} \xi_{j} \xi \ell}}_{\eta_{k}(\xi)} \widehat{\chi} k, ~ \widehat{P_{k} f}
$$

where $\widetilde{\chi}_{k}=1$ on $\operatorname{supp} \chi_{k}$ and $\operatorname{supp} \widetilde{\chi}_{k} \subseteq\left\{|\xi| \simeq 2^{k}\right\}$. Then

$$
P_{k} u=2^{-2 k} \stackrel{\vee}{\eta_{k}} * P_{k} f
$$

so

$$
\left\|P_{k} u\right\|_{L^{\infty}} \leq C 2^{-2 k}\left\|P_{k} f\right\|_{L^{\infty}} \leq C 2^{-2 k-\chi k}[f],
$$

which completes the proof.

### 1.4 Compactness and contradiction proof of Schauder estimates

Proof. Here are the steps:

1. Assume that the desired inequality fails. Then there exist $a_{n}^{j, k}, u_{n}, f_{n}$ such that (after normalization)

$$
P_{n} u_{n}=f_{n}, \quad\left[u_{n}\right]_{C^{2 \alpha}}=1, \quad\left[f_{n}\right]_{C^{0, \alpha}} \leq \frac{1}{n}
$$

After translation, we may also ensure that for some $\eta_{n} \in \mathbb{R}^{d}$,

$$
\left|D^{2} u_{n}\left(\eta_{n}\right)-D^{2} u_{n}(0)\right| \geq c\left|\eta_{n}\right|^{\alpha} .
$$

Using scaling, we can assume that $\left|\eta_{n}\right|=1$.
2. Another massaging: Define $v_{n}(x)=u_{n}(x)-u_{n}(0)-x D u_{n}(0)-\frac{1}{2} x^{2} D^{2} u_{n}(0)$ to make $D^{2} v_{n}(0)=0$. Then

$$
P_{n} v_{n}=\left\langle f_{n}, \quad \widetilde{f}_{n} \rightarrow 0,\left[D^{2} v_{n}\right]_{C^{0, \alpha}}=1, \quad\right| D^{2} v_{n}\left(\eta_{j}\right) \mid \geq c .
$$

3. Take the limit: Let $a_{n}^{j, k} \rightarrow a_{\infty}^{j, k}, \widetilde{f}_{n} \rightarrow 0, v_{n} \rightarrow v$, and $\eta_{n} \rightarrow \eta_{\infty}$. Then $P_{\infty} v=0$ on $\mathbb{R}^{d}$, while

$$
\left[D^{2} v\right]_{C^{0, \alpha}} \leq 1, \quad D^{2} v\left(\eta_{\infty}\right) \neq 0
$$

But now use Liouville's theorem for $P_{\infty}$ (using Liouville's theorem for the Laplace equation) to get that $D^{2} v\left(\eta_{\infty}\right)=0$, a contradiction.

